U
    c͊                     @  s  d dl mZ d dlZd dlmZ d dlmZ d dlmZm	Z	 d dl
Z
d dlZd dlmZ d dlm  m  mZ d dlmZmZ erd dlmZmZ d d	lmZ d d
lmZ d dlm Z  d dl!m"Z" d dl#m$Z$m%Z% d dl&m'Z' d dl(m)  m*Z* d dl+m,Z,m-Z-m.Z. d dl/m0Z0m1Z1 d dl2m3Z3m4Z4 d dl5m6Z6m7Z7m8Z8m9Z9m:Z:m;Z;m<Z<m=Z=m>Z>m?Z? d dl@mAZAmBZB d dlCmDZDmEZE d dlFmGZGmHZH ddddddddZIdddddd ZJG d!d" d"eGZKG d#d$ d$eHeKZLG d%d& d&eKZMdS )'    )annotationsN)partial)dedent)TYPE_CHECKINGcast)	Timedelta)AxisTimedeltaConvertibleTypes)	DataFrameSeries)NDFrame)function)doc)find_stack_level)is_datetime64_ns_dtypeis_numeric_dtype)isna)BaseIndexerExponentialMovingWindowIndexerGroupbyIndexer)get_jit_argumentsmaybe_use_numba)maybe_warn_args_and_kwargszsqrt)
_shared_docsargs_compatcreate_section_headerkwargs_compatkwargs_numeric_onlynumba_notestemplate_headertemplate_returnstemplate_see_alsowindow_agg_numba_parameters)generate_numba_ewm_funcgenerate_numba_ewm_table_func)EWMMeanStategenerate_online_numba_ewma_func)
BaseWindowBaseWindowGroupbyfloat | Nonefloat)comassspanhalflifealphareturnc                 C  s   t | |||}|dkr td| d k	r:| dk rtdn|d k	r`|dk rRtd|d d } nt|d k	r|dkrxtddttd|  }d| d } n6|d k	r|dks|dkrtd	d| | } ntd
t| S )N   z8comass, span, halflife, and alpha are mutually exclusiver   z comass must satisfy: comass >= 0zspan must satisfy: span >= 1   z#halflife must satisfy: halflife > 0g      ?z"alpha must satisfy: 0 < alpha <= 1z1Must pass one of comass, span, halflife, or alpha)commoncount_not_none
ValueErrornpexplogr+   )r,   r-   r.   r/   Zvalid_countZdecay r9   :/tmp/pip-unpacked-wheel-g7fro6k3/pandas/core/window/ewm.pyget_center_of_massK   s*    
r;   !str | np.ndarray | NDFrame | None(float | TimedeltaConvertibleTypes | None
np.ndarray)timesr.   r0   c                 C  s4   t j| t jt jd}tt|j}t || S )a  
    Return the diff of the times divided by the half-life. These values are used in
    the calculation of the ewm mean.

    Parameters
    ----------
    times : str, np.ndarray, Series, default None
        Times corresponding to the observations. Must be monotonically increasing
        and ``datetime64[ns]`` dtype.
    halflife : float, str, timedelta, optional
        Half-life specifying the decay

    Returns
    -------
    np.ndarray
        Diff of the times divided by the half-life
    dtype)	r6   ZasarrayviewZint64float64r+   r   valueZdiff)r?   r.   Z_timesZ	_halflifer9   r9   r:   _calculate_deltasl   s    
 rE   c                      s  e Zd ZdZdddddddd	d
dg
Zdaddddddddddddddd fddZddddd d!d"Zd#d$d%d&Zdbd(d$d)d*Ze	e
d+ ed,ed-d.d/d0 fd1d2ZeZe	eed3eee eed4eed5eed6ed7d/d8d9d:d;d<dcddd=dd>d?d@Ze	eed3eee eed4eed5eed6ed7d/d8d9dAdBd<ddddd=dd>dCdDZe	eed3edEd7d/d8eeeed4eed5eddF d9dGdHd<dedddIdJdKZdfddLdMdNZe	eed3edEd7d/d8eeeed4eed5eddF d9dOdPd<dgdddIdQdRZe	eed3edSd7d/d8eeed4eed5eddF d9dTdUd<dhdVdWdddXdYdZZe	eed3ed[d7d/d8eeed4eed5eddF d9d\d]d<didVdWdd^d_d`Z  ZS )jExponentialMovingWindowa  
    Provide exponentially weighted (EW) calculations.

    Exactly one of ``com``, ``span``, ``halflife``, or ``alpha`` must be
    provided if ``times`` is not provided. If ``times`` is provided,
    ``halflife`` and one of ``com``, ``span`` or ``alpha`` may be provided.

    Parameters
    ----------
    com : float, optional
        Specify decay in terms of center of mass

        :math:`\alpha = 1 / (1 + com)`, for :math:`com \geq 0`.

    span : float, optional
        Specify decay in terms of span

        :math:`\alpha = 2 / (span + 1)`, for :math:`span \geq 1`.

    halflife : float, str, timedelta, optional
        Specify decay in terms of half-life

        :math:`\alpha = 1 - \exp\left(-\ln(2) / halflife\right)`, for
        :math:`halflife > 0`.

        If ``times`` is specified, a timedelta convertible unit over which an
        observation decays to half its value. Only applicable to ``mean()``,
        and halflife value will not apply to the other functions.

        .. versionadded:: 1.1.0

    alpha : float, optional
        Specify smoothing factor :math:`\alpha` directly

        :math:`0 < \alpha \leq 1`.

    min_periods : int, default 0
        Minimum number of observations in window required to have a value;
        otherwise, result is ``np.nan``.

    adjust : bool, default True
        Divide by decaying adjustment factor in beginning periods to account
        for imbalance in relative weightings (viewing EWMA as a moving average).

        - When ``adjust=True`` (default), the EW function is calculated using weights
          :math:`w_i = (1 - \alpha)^i`. For example, the EW moving average of the series
          [:math:`x_0, x_1, ..., x_t`] would be:

        .. math::
            y_t = \frac{x_t + (1 - \alpha)x_{t-1} + (1 - \alpha)^2 x_{t-2} + ... + (1 -
            \alpha)^t x_0}{1 + (1 - \alpha) + (1 - \alpha)^2 + ... + (1 - \alpha)^t}

        - When ``adjust=False``, the exponentially weighted function is calculated
          recursively:

        .. math::
            \begin{split}
                y_0 &= x_0\\
                y_t &= (1 - \alpha) y_{t-1} + \alpha x_t,
            \end{split}
    ignore_na : bool, default False
        Ignore missing values when calculating weights.

        - When ``ignore_na=False`` (default), weights are based on absolute positions.
          For example, the weights of :math:`x_0` and :math:`x_2` used in calculating
          the final weighted average of [:math:`x_0`, None, :math:`x_2`] are
          :math:`(1-\alpha)^2` and :math:`1` if ``adjust=True``, and
          :math:`(1-\alpha)^2` and :math:`\alpha` if ``adjust=False``.

        - When ``ignore_na=True``, weights are based
          on relative positions. For example, the weights of :math:`x_0` and :math:`x_2`
          used in calculating the final weighted average of
          [:math:`x_0`, None, :math:`x_2`] are :math:`1-\alpha` and :math:`1` if
          ``adjust=True``, and :math:`1-\alpha` and :math:`\alpha` if ``adjust=False``.

    axis : {0, 1}, default 0
        If ``0`` or ``'index'``, calculate across the rows.

        If ``1`` or ``'columns'``, calculate across the columns.

        For `Series` this parameter is unused and defaults to 0.

    times : str, np.ndarray, Series, default None

        .. versionadded:: 1.1.0

        Only applicable to ``mean()``.

        Times corresponding to the observations. Must be monotonically increasing and
        ``datetime64[ns]`` dtype.

        If 1-D array like, a sequence with the same shape as the observations.

        .. deprecated:: 1.4.0
            If str, the name of the column in the DataFrame representing the times.

    method : str {'single', 'table'}, default 'single'
        .. versionadded:: 1.4.0

        Execute the rolling operation per single column or row (``'single'``)
        or over the entire object (``'table'``).

        This argument is only implemented when specifying ``engine='numba'``
        in the method call.

        Only applicable to ``mean()``

    Returns
    -------
    ``ExponentialMovingWindow`` subclass

    See Also
    --------
    rolling : Provides rolling window calculations.
    expanding : Provides expanding transformations.

    Notes
    -----
    See :ref:`Windowing Operations <window.exponentially_weighted>`
    for further usage details and examples.

    Examples
    --------
    >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]})
    >>> df
         B
    0  0.0
    1  1.0
    2  2.0
    3  NaN
    4  4.0

    >>> df.ewm(com=0.5).mean()
              B
    0  0.000000
    1  0.750000
    2  1.615385
    3  1.615385
    4  3.670213
    >>> df.ewm(alpha=2 / 3).mean()
              B
    0  0.000000
    1  0.750000
    2  1.615385
    3  1.615385
    4  3.670213

    **adjust**

    >>> df.ewm(com=0.5, adjust=True).mean()
              B
    0  0.000000
    1  0.750000
    2  1.615385
    3  1.615385
    4  3.670213
    >>> df.ewm(com=0.5, adjust=False).mean()
              B
    0  0.000000
    1  0.666667
    2  1.555556
    3  1.555556
    4  3.650794

    **ignore_na**

    >>> df.ewm(com=0.5, ignore_na=True).mean()
              B
    0  0.000000
    1  0.750000
    2  1.615385
    3  1.615385
    4  3.225000
    >>> df.ewm(com=0.5, ignore_na=False).mean()
              B
    0  0.000000
    1  0.750000
    2  1.615385
    3  1.615385
    4  3.670213

    **times**

    Exponentially weighted mean with weights calculated with a timedelta ``halflife``
    relative to ``times``.

    >>> times = ['2020-01-01', '2020-01-03', '2020-01-10', '2020-01-15', '2020-01-17']
    >>> df.ewm(halflife='4 days', times=pd.DatetimeIndex(times)).mean()
              B
    0  0.000000
    1  0.585786
    2  1.523889
    3  1.523889
    4  3.233686
    comr-   r.   r/   min_periodsadjust	ignore_naaxisr?   methodNr   TFsingle	selectionr   r*   r=   
int | Noneboolr   r<   strNone)objrG   r-   r.   r/   rH   rI   rJ   rK   r?   rL   r0   c             
     s  t  j||d krdntt|dd dd ||	|d || _|| _|| _|| _|| _|| _	|
| _
| j
d k	rT| jsvtdt| j
trtjdtt d td| j| j
 | _
t| j
stdt| j
t|krtd	t| jttjtjfstd
t| j
 r
tdt| j
| j| _t | j| j| jdkrLt!| j| jd | j| _"nd| _"nj| jd k	rt| jttjtjfrtdtj#t| j$j%| j& d dtj'd| _t!| j| j| j| j| _"d S )Nr1   F)rT   rH   oncenterclosedrL   rK   rO   z)times is not supported with adjust=False.zSpecifying times as a string column label is deprecated and will be removed in a future version. Pass the column into times instead.
stacklevelr   z#times must be datetime64[ns] dtype.z,times must be the same length as the object.z/halflife must be a timedelta convertible objectz$Cannot convert NaT values to integerr   g      ?zKhalflife can only be a timedelta convertible argument if times is not None.r@   )(super__init__maxintrG   r-   r.   r/   rI   rJ   r?   NotImplementedError
isinstancerR   warningswarnFutureWarningr   r   _selected_objr   r5   lendatetime	timedeltar6   Ztimedelta64r   anyrE   _deltasr3   r4   r;   _comonesrT   shaperK   rC   )selfrT   rG   r-   r.   r/   rH   rI   rJ   rK   r?   rL   rO   	__class__r9   r:   r[   ^  sp    


  z ExponentialMovingWindow.__init__r>   r]   )startendnum_valsr0   c                 C  s   d S Nr9   )rl   ro   rp   rq   r9   r9   r:   _check_window_bounds  s    z,ExponentialMovingWindow._check_window_boundsr   r0   c                 C  s   t  S )z[
        Return an indexer class that will compute the window start and end bounds
        )r   rl   r9   r9   r:   _get_window_indexer  s    z+ExponentialMovingWindow._get_window_indexernumbaOnlineExponentialMovingWindowc                 C  s8   t | j| j| j| j| j| j| j| j| j	| j
||| jdS )a  
        Return an ``OnlineExponentialMovingWindow`` object to calculate
        exponentially moving window aggregations in an online method.

        .. versionadded:: 1.3.0

        Parameters
        ----------
        engine: str, default ``'numba'``
            Execution engine to calculate online aggregations.
            Applies to all supported aggregation methods.

        engine_kwargs : dict, default None
            Applies to all supported aggregation methods.

            * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
              and ``parallel`` dictionary keys. The values must either be ``True`` or
              ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is
              ``{{'nopython': True, 'nogil': False, 'parallel': False}}`` and will be
              applied to the function

        Returns
        -------
        OnlineExponentialMovingWindow
        )rT   rG   r-   r.   r/   rH   rI   rJ   rK   r?   engineengine_kwargsrO   )rx   rT   rG   r-   r.   r/   rH   rI   rJ   rK   r?   Z
_selection)rl   ry   rz   r9   r9   r:   online  s    zExponentialMovingWindow.online	aggregatezV
        See Also
        --------
        pandas.DataFrame.rolling.aggregate
        a  
        Examples
        --------
        >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]})
        >>> df
           A  B  C
        0  1  4  7
        1  2  5  8
        2  3  6  9

        >>> df.ewm(alpha=0.5).mean()
                  A         B         C
        0  1.000000  4.000000  7.000000
        1  1.666667  4.666667  7.666667
        2  2.428571  5.428571  8.428571
        zSeries/Dataframe )Zsee_alsoZexamplesklassrK   c                   s   t  j|f||S rr   )rZ   r|   rl   funcargskwargsrm   r9   r:   r|     s    z!ExponentialMovingWindow.aggregateZ
ParametersZReturnszSee AlsoZNotes
r1   ewmz"(exponential weighted moment) meanmean)Zwindow_methodZaggregation_descriptionZ
agg_method)ry   rz   )numeric_onlyc          
   	   O  s   t t| d|| t|rf| jdkr*t}nt}|f t|| j| j| j	t
| jdd}| j|ddS |dkr|d k	r~tdtd|| | jd krd n| j}ttj| j| j| j	|dd}	| j|	d|dS td	d S )
Nr   rM   TrG   rI   rJ   deltas	normalizenameZcythonN+cython engine does not accept engine_kwargsr   r   )engine must be either 'numba' or 'cython')r   typer   rL   r$   r%   r   ri   rI   rJ   tuplerh   _applyr5   nvvalidate_window_funcr?   r   window_aggregationsr   
rl   r   ry   rz   r   r   r   Zewm_funcr   window_funcr9   r9   r:   r     s:    

zExponentialMovingWindow.meanz!(exponential weighted moment) sumsumc          
   	   O  s   t t| d|| | js tdt|rt| jdkr8t}nt}|f t|| j	| j| j
t| jdd}| j|ddS |dkr|d k	rtdtd|| | jd krd n| j}ttj| j	| j| j
|dd}	| j|	d|d	S td
d S )Nr   z(sum is not implemented with adjust=FalserM   Fr   r   r   r   r   r   )r   r   rI   r^   r   rL   r$   r%   r   ri   rJ   r   rh   r   r5   r   r   r?   r   r   r   r   r9   r9   r:   r   I  s>    

zExponentialMovingWindow.sumzc
        bias : bool, default False
            Use a standard estimation bias correction.
        z0(exponential weighted moment) standard deviationstdbiasr   c                 O  sj   t t| d|| td|| |rP| jjdkrPt| jjsPtt| j	 dt
| jf ||d|S )Nr   r1   z$.std does not implement numeric_onlyr   )r   r   r   r   rc   ndimr   rA   r^   __name__r   var)rl   r   r   r   r   r9   r9   r:   r     s    

zExponentialMovingWindow.stdr   c                 O  s$   t jdtt d | j|f||S )NzGvol is deprecated will be removed in a future version. Use std instead.rX   )r`   ra   rb   r   r   rl   r   r   r   r9   r9   r:   vol  s    zExponentialMovingWindow.volz&(exponential weighted moment) variancer   c                   sZ   t t| d|| td|| tj}t|| j| j| j	|d  fdd}| j
|d|dS )Nr   )rG   rI   rJ   r   c                   s    | |||| S rr   r9   )valuesbeginrp   rH   Zwfuncr9   r:   var_func  s    z-ExponentialMovingWindow.var.<locals>.var_funcr   )r   r   r   r   r   ewmcovr   ri   rI   rJ   r   )rl   r   r   r   r   r   r   r9   r   r:   r     s    zExponentialMovingWindow.vara  
        other : Series or DataFrame , optional
            If not supplied then will default to self and produce pairwise
            output.
        pairwise : bool, default None
            If False then only matching columns between self and other will be
            used and the output will be a DataFrame.
            If True then all pairwise combinations will be calculated and the
            output will be a MultiIndex DataFrame in the case of DataFrame
            inputs. In the case of missing elements, only complete pairwise
            observations will be used.
        bias : bool, default False
            Use a standard estimation bias correction.
        z/(exponential weighted moment) sample covariancecovDataFrame | Series | Nonebool | Noneotherpairwiser   r   c                   sN   ddl m  ttdd | d|  fdd}j||||S )Nr   r   r   c           	        s    | } |} }jd k	r,jn|j}|jt||jjjd\}}t	
|||j|jjj	} || j| jdS )NZ
num_valuesrH   rV   rW   stepindexr   )_prep_valuesrv   rH   window_sizeget_window_boundsrd   rV   rW   r   r   r   ri   rI   rJ   r   r   )	xyx_arrayy_arraywindow_indexerrH   ro   rp   resultr   r   rl   r9   r:   cov_func  s4    


z-ExponentialMovingWindow.cov.<locals>.cov_funcpandasr   r   r   Z_validate_numeric_onlyZ_apply_pairwiserc   )rl   r   r   r   r   r   r   r9   r   r:   r     s    %    zExponentialMovingWindow.covaL  
        other : Series or DataFrame, optional
            If not supplied then will default to self and produce pairwise
            output.
        pairwise : bool, default None
            If False then only matching columns between self and other will be
            used and the output will be a DataFrame.
            If True then all pairwise combinations will be calculated and the
            output will be a MultiIndex DataFrame in the case of DataFrame
            inputs. In the case of missing elements, only complete pairwise
            observations will be used.
        z0(exponential weighted moment) sample correlationcorrr   r   r   c                   sL   ddl m  ttdd | d|  fdd}j||||S )Nr   r   r   c           
   	     s    | } |} }jd k	r,jn|j|jt|jjjd\  fdd}t	j
dd4 |||}|||}|||}|t||  }	W 5 Q R X |	| j| jdS )Nr   c                   s    t |  |jjjd	S )NT)r   r   ri   rI   rJ   )XY)rp   rH   rl   ro   r9   r:   _cov\  s    z<ExponentialMovingWindow.corr.<locals>.cov_func.<locals>._covignore)allr   )r   rv   rH   r   r   rd   rV   rW   r   r6   Zerrstater   r   r   )
r   r   r   r   r   r   r   Zx_varZy_varr   r   rl   )rp   rH   ro   r:   r   K  s*    





z.ExponentialMovingWindow.corr.<locals>.cov_funcr   )rl   r   r   r   r   r   r9   r   r:   r   $  s    "%    zExponentialMovingWindow.corr)
NNNNr   TFr   NrM   )rw   N)F)F)FF)F)FF)NNFF)NNF) r   
__module____qualname____doc___attributesr[   rs   rv   r{   r   r   r   r|   Zaggr    r   r   r   r#   r   r!   r"   r   replacer   r   r   r   r   r   r   __classcell__r9   r9   rm   r:   rF      sl   F          ,U   , ) +  
  
  
    0  
   rF   c                      sF   e Zd ZdZejej Zdddd fddZddd	d
Z  Z	S )ExponentialMovingWindowGroupbyzF
    Provide an exponential moving window groupby implementation.
    N)_grouperrS   rt   c                  s\   t  j|f|d|i| |jsX| jd k	rXtt| jj	 }t
| j|| j| _d S )Nr   )rZ   r[   emptyr?   r6   concatenatelistr   indicesr   rE   Ztaker.   rh   )rl   rT   r   r   r   Zgroupby_orderrm   r9   r:   r[   |  s    
z'ExponentialMovingWindowGroupby.__init__r   c                 C  s   t | jjtd}|S )z
        Return an indexer class that will compute the window start and end bounds

        Returns
        -------
        GroupbyIndexer
        )Zgroupby_indicesr   )r   r   r   r   )rl   r   r9   r9   r:   rv     s
    z2ExponentialMovingWindowGroupby._get_window_indexer)
r   r   r   r   rF   r   r)   r[   rv   r   r9   r9   rm   r:   r   u  s   r   c                      s   e Zd Zd)dddddd	dd
dddddddd fddZddddZdd Zd*ddddZd+dddddd Zd,ddddd!d"d#Zd-ddd$d%Z	ddd&d'd(Z
  ZS ).rx   Nr   TFrw   rN   r   r*   r=   rP   rQ   r   r<   rR   zdict[str, bool] | NonerS   )rT   rG   r-   r.   r/   rH   rI   rJ   rK   r?   ry   rz   r0   c                  sp   |
d k	rt dt j|||||||||	|
|d t| j| j| j| j|j| _	t
|rd|| _|| _ntdd S )Nz0times is not implemented with online operations.)rT   rG   r-   r.   r/   rH   rI   rJ   rK   r?   rO   z$'numba' is the only supported engine)r^   rZ   r[   r&   ri   rI   rJ   rK   rk   _meanr   ry   rz   r5   )rl   rT   rG   r-   r.   r/   rH   rI   rJ   rK   r?   ry   rz   rO   rm   r9   r:   r[     s8        z&OnlineExponentialMovingWindow.__init__rt   c                 C  s   | j   dS )z=
        Reset the state captured by `update` calls.
        N)r   resetru   r9   r9   r:   r     s    z#OnlineExponentialMovingWindow.resetc                 O  s   t S rr   r^   r   r9   r9   r:   r|     s    z'OnlineExponentialMovingWindow.aggregater   c                 O  s   t S rr   r   r   r9   r9   r:   r     s    z!OnlineExponentialMovingWindow.stdr   r   r   c                 K  s   t S rr   r   )rl   r   r   r   r   r9   r9   r:   r     s    z"OnlineExponentialMovingWindow.corrr   c                 K  s   t S rr   r   )rl   r   r   r   r   r   r9   r9   r:   r     s    z!OnlineExponentialMovingWindow.covc                 O  s   t S rr   r   r   r9   r9   r:   r     s    z!OnlineExponentialMovingWindow.var)updateupdate_timesc                O  sr  i }| j jdkrdnd}|dk	r*tdn(tjt| j j| jd  d dtjd}|dk	r| j	j
dkrntd	d}|j|d
< |r| j	j
tjddf }	|j|d< n| j	j
}	|j|d< t|	| f}
n@d}| j j|d
< |r| j j|d< n| j j|d< | j tj }
tf t| j}| j	|r(|
n|
ddtjf || j|}|sR| }||d }| j j|f|}|S )a[  
        Calculate an online exponentially weighted mean.

        Parameters
        ----------
        update: DataFrame or Series, default None
            New values to continue calculating the
            exponentially weighted mean from the last values and weights.
            Values should be float64 dtype.

            ``update`` needs to be ``None`` the first time the
            exponentially weighted mean is calculated.

        update_times: Series or 1-D np.ndarray, default None
            New times to continue calculating the
            exponentially weighted mean from the last values and weights.
            If ``None``, values are assumed to be evenly spaced
            in time.
            This feature is currently unsupported.

        Returns
        -------
        DataFrame or Series

        Examples
        --------
        >>> df = pd.DataFrame({"a": range(5), "b": range(5, 10)})
        >>> online_ewm = df.head(2).ewm(0.5).online()
        >>> online_ewm.mean()
              a     b
        0  0.00  5.00
        1  0.75  5.75
        >>> online_ewm.mean(update=df.tail(3))
                  a         b
        2  1.615385  6.615385
        3  2.550000  7.550000
        4  3.520661  8.520661
        >>> online_ewm.reset()
        >>> online_ewm.mean()
              a     b
        0  0.00  5.00
        1  0.75  5.75
        r2   TFNz update_times is not implemented.r1   r   r@   z;Must call mean with update=None first before passing updater   columnsr   )rc   r   r^   r6   rj   r\   rk   rK   rC   r   Zlast_ewmr5   r   Znewaxisr   r   r   Zto_numpyZastyper'   r   rz   Zrun_ewmrH   ZsqueezeZ_constructor)rl   r   r   r   r   Zresult_kwargsZis_frameZupdate_deltasZresult_from
last_valueZnp_arrayZ	ewma_funcr   r9   r9   r:   r     sR    ,
 

z"OnlineExponentialMovingWindow.mean)NNNNr   TFr   Nrw   N)F)NNF)NNFF)F)r   r   r   r[   r   r|   r   r   r   r   r   r   r9   r9   rm   r:   rx     s8              .+       
rx   )N
__future__r   re   	functoolsr   textwrapr   typingr   r   r`   Znumpyr6   Zpandas._libs.tslibsr   Z pandas._libs.window.aggregationsZ_libsZwindowZaggregationsr   Zpandas._typingr   r	   r   r
   r   Zpandas.core.genericr   Zpandas.compat.numpyr   r   Zpandas.util._decoratorsr   Zpandas.util._exceptionsr   Zpandas.core.dtypes.commonr   r   Zpandas.core.dtypes.missingr   Zpandas.core.commoncorer3   Zpandas.core.indexers.objectsr   r   r   Zpandas.core.util.numba_r   r   Zpandas.core.window.commonr   r   Zpandas.core.window.docr   r   r   r   r   r   r    r!   r"   r#   Zpandas.core.window.numba_r$   r%   Zpandas.core.window.onliner&   r'   Zpandas.core.window.rollingr(   r)   r;   rE   rF   r   rx   r9   r9   r9   r:   <module>   sF   0!      n!